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The internal energy of ferroelectric domain structures 
characterized by pre-fractals of the pentad Cantor sets 

T Ozaki and J Ohgami 
Depa"nt of Materials Science. Faculty of Science, Hiroshima University, Higashi. 
Hiroshima 724, lapm 

Received 17 J a n u q  1994, m final form 25 October 1994 

Abstract. The laminated ferroelectric 180" domain structure optically observed in uniaxial 
ferroelectric KDP is periodic along the normal to the domain walls. Each Mf-period of the 
domain structure is chxacterized by the first four pre-fractals of the pentad Cantor sets. In order 
to investigate the thermodynamic stabllity of these pre-fractal domain structures, the electrostatic 
energy U&(") and the wall energy Uw(n) of the nth pre-fractal domain structure have been 
formulated as functions of the period in the framework of the Kittel theory It is shown that 
under a constant period the electrostatic energy &(3) of the third pre-fractal domain stmcture 
takes the least value while the wall energy Uw(n) increases monotonically with increasing 
ordinal number n of the pre-fractal domain structure. The equilibrium half-period minimizing 
the intemal energy including U&(") and Uw(n) is proportional to the square root of the thickness 
of a crystal plate. The equilibrium half-period increases monotonically with increasing ordinal 
number n of the pre-fractal domain structure. The equilibrium intemal energy lakes the least 
value in the zeroth pre-fractal domain structure and the second-least value in the second pre- 
fractal domain StNCture. The ratio of the latter IO the former is nearly equal to unity, with the 
value of 1.10. 

1. Introduction 

Fractal aspects of macroscopic structures have been realized in various kinds of condensed 
matter [l]. Simple mechanisms dominating the formation of complex fractals have 
motivated many investigators. Recently fractal aspects have been discovered in the 
laminated ferroelectric 180" domain structure of potassium dihydrogen phosphate (KDP) 121. 
Four types of self-similar domain pattern are optically observed to be periodic along the 
normal to the 180" walls in the stable state. Each half-period of the domain patterns shown 
in figure 1 is characterized by the first four generations of the pre-fractals of the pentad 
Cantor sets having the fractal dimension D 0.756 along the domain wall normal. We call 
these patterns the prefractal domain patterns. The ordinal number n of the observed pre- 
fractal domain pattern increases without changing its period 2L. as the numerical aperture 
of the objective lens of the polarizing optical microscope increases. However, an ultimate 
domain structure showing these prefractal domain patterns is not yet known. From a 
crystallographic standpoint, we can only make the prediction that the width of the narrowest 
domains in the nth pre-fractal domain structure, f($)"L, would be slightly larger than the 
lattice spacing parallel to the domain wall normal, 14.852 A at 90 K [3], in the case of the 
eighth pre-fractal domain structure having the period 2L = 9.1 p m  for example. 

In the short-circuited KDP crystals in which spontaneous polarization charges are fully 
neutralized by true charges [4], the periods of the observed domain patterns are much 
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Figure 1. A schematic illustration of four pre-fractal domain structures having a period 2L 
along the normal to their 180" walls. The 180' walls ace represented by the vertical solid lines 
in each nth pre-fractal domain structure. The spontaneous polarization vector is perpendicular to 
the surface of this page. The ordinal number n ofthe pre-fractal domain structure corresponds to 
the generation of a pre-fractal of the pentad Cantor sets having the fractal dimension D is 0.756 
along the domain wall normal. The (nt I)th pre-fractal domain structure is obtained by reversing 
the polxity of B central fifth part of every + domain in  the left half-period m d  the polxity 
of a central fifth pall of every - domain in the right half-period in the nfh pre-fractal domain 
structure. In the limit n + m, the left half-period appraachcs the pentad Cantor sets having an 
infinite number of + domains with infinitesimal widths, while the right half~period the pcntad 
Cantor F C ~ S  having an infinite number of - domains with infinitesimal widths. A. B. C and D 
correspond to the pre-fractal domain patterns named in [Z,41. A fractal dimension describing 
overall the period of these patterns is not yet known. 

enlarged and their fractal aspects are lost owing to the absence of a depolarization field 
antiparallel to the spontaneous polarization vector. This verifies that the depolarization field 
is one of the essential factors stabilizing thermodynamically the pre-fractal domain structure 
of KDP. If we know the internal energy, including a contribution from the depolarization 
field generated in the nth pre-fractal domain structure, we shall be able to predict an 
ultimate domain structure at 0 K from a thermodynamic standpoint. Branched domain 
structure models [5] have already been proposed to explain how a demagnetization field 
causes ferromagnetic domains to branch near the surfaces of a uniaxial ferromagnetic plate. 
Unfortunately, however, no models have fractal aspects in domain branching. 

In the present study, we take the simplest course in constructing the first model of the 
pre-fractal domain structures. The internal energy of the nth pre-fractal domain structure 
with the walls piercing through a uniaxial ferroelectric plate is formulated in the framework 
of the Kittel [6] theory. In the Kittel model, the 180" domain walls have no thicknesses 
but have a surface energy density. The domain width corresponding to the half-period of 
the zeroth pre-facta1 domain structure shown in figure 1 is diminished by the electrostatic 
energy originating from the depolarization field but is enlarged by the wall energy. The 
domain width minimizing the internal energy including the electrostatic energy and the wall 
energy is proportional to the square root of the thickness of a plate. The present pre-fractal 
domain structure model, which is an extension of the Kittel model, is a limiting case of a 



internal energy of pre-fractal domain structures I713 

branched domain stmcture model as far as the coercive field is concerned. The coercive 
field necessary to make domains branch is regafded as much weaker in the present model 
with the walls piercini through a plate than in a branched structure model with the walls 
localized near the surfaces of a plate. In the latter model, it is assumed tbat the coercive 
field is as strong as the electric field limiting the stability of a uniform ferroelectric phase 
described in the Landau phenomenological theory [SI. 

In order to extend the Kittel theory to the present case of the nth pre-fractal domain 
structure, we first derive the general formula for the electrostatic energy of a periodic 180" 
domain structure formed in a uniaxial ferroelectric plate as a function of the period 2L of the 
structure. Secondly we derive the formulae for the electrostatic energy &(n) and the wall 
energy U&) of the nth prefractal domain structure. Thirdly we minimize the internal 
energy including and Uw(n) with respect to L .  Finally we calculate numerically 
the equilibrium values of the internal energy and the period of the nth pre-fractal domain 
structure. 

2. Internal energy 

2.1. Electrostatic energy 

As a first approach, we suppose a ferroelectric 180" domain structure formed in a semi- 
infinite crystal plate shown in figure '2 in the framework of the Kittel [6] theory. The domain 
structure has the period 2L along then axis and the spontaneous polarization Ps along the z 
axis. Domain walls parallel to the y-z plane have no thicknesses. The charge density p(n) 
per unit area on the surface z = 0 of the plate is an odd function of x and takes the value 
of either Ps or -Ps irrespective of the passage of time. Here we assume that the domain 
structure shown in figure 2 is frozen at 0 K so that domain wall motion no longer takes 
place. Under the above condition, the relationship between the electric displacement and 
the eiechic field is regarded as approximately linear in the plate. Therefore, the electrostatic 
potential on the surface z = 0 can be obtained by solving the Laplace equations outside 
and inside the plate with consideration of the boundary conditions of an electric field (see 
appendix). Thus the general formula obtained for the electrostatic potential $ ( x )  on the 
surface z = 0 of the plate is expressed by 

Here e* and ei represent the principal dielectric constants of the plate along the x and 
the z axes, respectively. The factor 2/[1 + amounts to the E* correction factor 
originating from the asymmetry of the electric field with respect to the surface z = 0 of the 
plate. 

Substituting equation (1) into the relation 

we obtain the general formula for the electrostatic energy UE per unit area on the surface 
z = 0 of the plate: 
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Fiwure 2. A schematic illustration of the ferroelectric IXO; domain stcucluce corresponding 
Iu the first prc-fractal domain structure in the scmi-inhnire crystal plate occupying thc space 
-CO 4 x < CO. -m < .Y < 00 and i < 0. The structure has thc period 2L along the .c axis 
m d  the sponmneous polarimion P% ;dong the I axis. Domain walls parallel to the y - z  plane 
haw no thicknesses hut have the surfacc cncrgy density n. 

Calculating the integration in equation (2) in the nth pre-fractal domain structure shown in 
figure I ,  we obtain the electrostatic energy U,(n) of the nth pre-fractal domain structure: 

4P:L 
+) (3) 

uE(n) = X i t " [ l  + (t,tz)l'2] 
where 

(4) 
m I  m I  
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It is difficult to express a@), the sum of series defined in equation (3), by an explicit 
function of the ordinal number n of the pre-fractal domain structure. The electrostatic 
energy &(O) of the zeroth pre-fractal domain structure, which is obtained by substituting 
equation (4) into equation (3), coincides with the fohula  reported previoudly [6,7]. 

A B C D E F G H I J K  

- 

I 

0 I 

0 1 2 ~3 4 5 6 7 8 9 10 
n 

Figure 3. The normalized value of the electrostatic energy U&) of the nth pre-fractal domain 
structure characterized by the nth pre-fractal of the pentad Cantor sets in each half-period. The 
normalized U&) is equivalent to o(n) , the sum of series defined by equation (3). 

The value of the normalized U&), which is equivalent to a(n) in equation (3), was 
calculated numerically and is shown in figure 3. The figure shows that the electrostatic 
energy &(n) takes the least value in the third pre-fractal domain structure under a constant 
period 2L. The third pre-fractal domain structure shown in figure 1 has the volume ratio of 
+ domains to - domains most nearly equal to unity: 1.05 in the left half-period and 0.95 
in the right half-period. 

Figure 3 suggests that the electrostatic energy &(E)  gradually approaches &(CO) for 
the hypothetical fractal domain structure corresponding to the pentad Cantor sets in each 
half-period. The calculated ratio U5(17)/U~(0) 2 0.925 predicts that the value of &(CO) 
will be equal to that of &(a). 
2.2. Domain wall energy 

We suppose that the crystal plate shown in figure 2 has the thickness d along the z axis and 
every domain wall has the surface energy 0 per unit area. Then, the domain wall energy 
U,(n) of the nth pre-fractal domain structure in a pillar having the cross section of a unit 
area on both surfaces of the plate is proportional to the density of walls (2"+' - l)/L: 

(5)  

The wall energy Uw(0) of the zeroth pre-fractal domain structure, which is given by 
equation (3, coincides with  the formula reported previously [6,7]. The wall energy U,(n) 
of the nth pre-fractal domain structure increases monotonically with increasing generation 
n under a constant period 2L. 

u d  
L 

Uw(n) = (z'+' - I)-. 
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2.3. Internal energy including electrostatic energy and wall energy 

We can neglect the electrostatic interaction between both surfaces of the plate in which the 
domains are very thin, d > L [7]. Then, the internal energy U ( n )  of the nth pre-fractal 
domain structure in a pillar having the cross section of a unit area on both surfaces of the 
plate is given by the sum of twice the electrostatic energy U&) expressed by equation (3) 
and the wall energy Uw(n) expressed by equation (5): 

T Ozaki and J Ohgami 

The half-period Le&) minimizing the energy U(n)  is obtained using the equilibrium 
condition dU(n)/dL = 0, as follows: 

The half-period L,(O) given by equation (7), which corresponds to the domain width 
of the zeroth pre-fractal domain structure shown in figure 1, coincides with the formula 
reported previously [7]. The most important point in equation (7) is that the equilibrium 
half-period Leq(n) of the nth pre-fractal domain structure is proportional to the square root 
of the thickness of the plate d. This explains the thickness dependence of the half-period 
of the pre-fractal domain patterns obtained in unelectroded KDP c plates [8]. Substituting 
equation (7) into equation (6), we obtain the equilibrium internal energy U&) of the nth 
pre-fractal domain structure: 

The values of the normalized L&) and Ues(n), which are equivalent to [ ( Z n f '  - 
I)/C+)]'/~ in equation (7) and [a(n)(Z"+' - 1)]'12 in equation (S), respectively, were 
calculated numerically and are shown in figure 4. The equilibrium half-period Le&) 
increases monotonically with increasing n, while the equilibrium internal energy U&) 
takes the least value in the zeroth pre-fractal domain StCucture and the second-least value 
in the second pre-fractal domain structure. The ratio of the two values is nearly equal to 
unity: U,,(Z)/U,(O) N 1.10. 

Figure 4 suggests that the hypothetical fractal domain structure has infinite values of 
Leq(w) and U e q ( 4 .  

3. Discussion 

The internal energy including only the electrostatic energy U&) shows, in figure 3, that the 
thud pre-fractal domain structure is stable under a constant period. This seems to support the 
fact that prefractal domain patterns having an ordinal number larger than 3 have not yet been 
observed. However, we cannot conclude that the third pre-fractal domain structure is the 
ultimate irrespective of its period, because it is necessary for us to observe narrow domains 
having widths less than the optical resolving power from now on. The thickness dependence 
of the half-period obtained for KDP [SI suggests the importance of the wall energy U&) 
as well as the electrostatic energy U&?). The internal energy including U&) and Uw(n) 
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A B C D E F G H I J K  

I I 
0 1 2  3 ~ 4  5 6 7 8 9 1 0  

n 
Figure 4. Normalized v31ues of the equilibrium internal energy Ucq(n) and the equilibrium 
half-period Log@) of the nth pre-fraeral domain stmcture chmktecterized by $e nth pre-fractal of 
the pentad Cantor sets in each half-period. The normalized Ucs(n) and Leg@) are equivalent to 
[ol(n)(Z"+' - in equation (8) and [(2"+( - l)/ol(n)]'/* in equation (7). respectively. 

shows, in figure 4, that the zeroth pre-fractal domain structure is stable and the second pre- 
fractal  domain^ structure is metastable. This contradicts the observations that the pre-fractal 
domain patterns having n = 1, 2 and 3, as well as the zeroth pattern, are observed in the 
stable state. We can think of two ways to improve the present pre-fractal domain structure 
model constructed in the framework of the Kittel model. The first way is to reconstruct 
the pre-fractal domain strnctnre model on the basis of a branched domain structnre model. 
It is expected that the zeroth pre-fractal domain structure would become unstable in plates 
having large thicknesses so that branched domain structures would become localized near 
the sulfaces of the plates [5]. The second way is to introduce a contribution of entropy into 
the pre-fractal domain structure model. Fortunately, the equilibrium values U&, Ue,(2) 
and Uq(3) of the internal energy are only slightly,larger *an that of U,,(O). The pre-fractal 
domain structures having n = 1,2 and 3 can become stable at high temperatures by a small 
contribution of entropy. 

Physical properties characteristic of KDP are not taken into consideration in the present 
calculation of Uq(n) .  Measurement of x-ray diffuse scattering in KDP has clarified that the 
domain wall has a statically modulated structure with the pattern of the atomic displacements 
similar to those occurring in ferroelectric fluctuations [9] .  This suggests that each domain 
wall itself has entropy. If the domain~wall entropy S(n)  of the nth pre-fractal domain 
structure increases with increasing ordinal number n, the free energy of the nth pre-fractal 
domain structure F(n)  = U&) + Uw(n) - T S ( n )  will take the least value in an nth 
generation other than the zeroth generation at high temperatures. 

The internal energy of the hypothetical fractal domain structure corresponding to the 
pentad Cantor sets in each half-period should be interesting from a mathematical point 
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of view. In figure 1, we can easily imagine the pre-fractal domain structure in the limit 
n + 00, namely the fractal domain structure. The fractal domain structure has an infinite 
number of + domains having infinitesimal widths in the left half-period and an infinite 
number of - domains having infinitesimal widths in the right half-period. The + domains 
have no volume fraction in the left half-period and the - domains have no volume fraction 
in the right half-period. As a result, the fractal domain structure takes the same value of 
the integration in equation (2) as the zeroth pre-fractal domain structure having a - domain 
in the left half-period and a + domain in the right half-period does. Therefore, the sum 
of series or(00) of the fractal domain structure takes the finite value equal to a(0) N 1.052 
of the zeroth pre-fractal domain structure presented in equation (4). This argument is 
supported by figure 3, indicating that U&) + &(O) in the limit n + 00. On the other 
hand, the fractal domain structure has an infiite value of the domain wall energy Uw(00) 
in equation (5) because of an infinite number of domain walls in each half-period. Finally. 
it is concluded that both the equilibrium internal energy U,(O~) given by equation (8 )  and 
the equilibrium half-period Leq(m) given by equation (7) have infinite values. Figure 4 
indicates these infinite values. We cannot introduce the domain wall entropy into the fractal 
domain structure having an infinite number of domain walls with no thicknesses. Therefore, 
the hypothetical fractal domain structure would not become stable at any temperature. 

It is interesting to know why KDP has the 180” domain structure characterized not by 
pre-fractals of the well known ‘triadic’ Cantor sets [l] but by the prefractals of the present 
‘pentad’ Cantor sets. The internal energy of 180’ domain structures characterized by pre- 
fractals of other kinds of Cantor set will be published elsewhere to clarify the outstanding 
aspects of the present prefractal domain structures characterized by the pentad Cantor sets. 

T Ozaki and J Ohgami 
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Appendix. Derivation of the electrostatic potential 

The general formula (1) for the electrostatic potential on the surface L = 0 of the periodic 
domain structure shown in figure 2 is derived in the following two stages. In the first stage, 
we derive the electrostatic potential on the dielectrically isotropic plate where the principal 
dielectric constants along the x and the z axes are cX = ez = 1. In the second stage, we 
derive the electrostatic potential on the dielectrically anisotropic plate where cx # E ,  # 1 
by applying the E* correction, &e dielectric version of the p* correction in  ferromagnets 
[6], on the potential derived in the first stage. 

In the first stage where cr = E* = 1, the electrostatic potential @I(x,z) satisfies the 
Laplace equation 

A h ( x .  Z) E h r . c ( ~ ,  Z) + h r ( x ,  Z) = 0 (AI) 

except on the surface z = 0 of the plate shown in figure 2. Solving equation (Al) under 
the boundary conditions 41 (0, z) = 41 ( L ,  z) = 0 and $1 ( x ,  -00) = 41 (x ,  +00) = 0, we 
obtain the well~known solution 
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The z component E ,  = -& of the electric field satisfies the boundary condition on the 
surface z = 0 

(A31 4 w x ,  Of) - @1&, 0-1 = -P(x)/Eo. 

The symmetry of the field E, with respect to the surface z = 0 is expressed by 

bIZ(X, O+) = -4%z(x, 0-1. (A41 

Equation (A3) is rewritten using equation (A4), as follows: 

@lz(x. 0-) = P ( X ) / 2 € 0 .  (A51 

Substituting &(x .  0) derived from equation (A2) into equation (AS), we . obtain ~~ the Fourier 
sine series expansion for the odd function p(x ) :  

Equation (A6) gives the coefficient C,,, in equation (AZ): 

Thus we derive the electrostatic potential on the surface z = 0 in the first stage where 
Ex = €z = 1: 

In the second stage where E ,  f cZ # 1, we suppose that the electrostatic potential 
&(x, z) is expressed by scaling the harmonic function &(x, z) along the E axis, as follows: 

Here A is called the E* correction factor, and < and t are the scaling factors. In contrast 
with the first stage, the z component of the electric field ET = -42 is asymmetric with 
respect to the surface z = 0 and satisfies the boundary condition 

( A l l )  EOhZL(X, O+) - €z€omZ:(x, 0-1 = -p(x) .  

Substituting equations (A9) and (A10) into equation (Al l )  and using the relations (A4) and 
(As), we obtain the following relation between the factors: 

A(< + E &  = 2. (A121 

For z > 0, the potential b2(x ,  z )  satisfies the Laplace equation 

A~Z~~,,(X,Z)+~~IL(~,Z)=~. (A13) 

Substituting' equation (AS) into equation (A13) and comparing with the Laplace 
equation (AI), we obtain one of the scaling factors: 

< = 1. (A141 
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For z < 0, on the other hand, the potential &(x, z) satisfies the Laplace equation in the 
plate: 

T Ozaki and J Ohgami 

€ X b X ( ~ ,  z )  + ~ L & Z ( L  2 )  = 0. ( ~ 1 5 )  

Substituting equation (A10) into equation (A15) and using the Laplace equation (Al) valid 
at any point except z = 0, we obtain the other scaling factor: 

= ( E x / E p .  (-416) 

Substituting equations (A14) and (A16) into equation (A12), we obtain the E* correction 
factor: 

A = 2/[1+ (ex~z)l’zJ. (~17) 

Affer substituting equations (A8) and (A17) into either equation (AS) or (AlO), we finally 
obtain the general formula (1) for the electrostatic potential on the surface z = 0 of the 
periodic domain structure shown in figure 2. 
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